
SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Unit Testing

There are many levels of software testing.

2

https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html

The developer of the

software has the

sole responsibility for

creating and

verifying unit tests.

The scientific method that you studied in your physics courses is
not just for science!

▪ Software testing and debugging is experimentation using the scientific
method

3

Step Scenario 1 Scenario 2

Make a hypothesis Your software executes per

the requirements

A certain place in your code is

responsible for a bug

Create an experiment to test the

hypothesis

Write unit tests Determine the scenario that triggers

the bug and set breakpoints where

you think the bug arises

Run the experiment Run the unit tests Run the system to the breakpoint

Analyze the results to decide if

the hypothesis is true

If unit tests pass, the

hypothesis is true

If the problem is seen, you have

found the bug location

These are the essential characteristics that should be your goals
when you write unit tests.
▪ Automatic

• Run each time an event happens, e.g. build, merge, deploy
• Pass/Fail determination

▪ Thorough
• High code coverage

▪ Repeatable
• Same results every time

▪ Independent
• Test only one thing at a time
• Tests should not depend on each other

▪ Professional
• Readable, Code Communication
• Use standard OO principles

▪ Fast
• Using Maven, unit tests are run on each build

4

This is the checklist of items that you should ensure get tested by a
class' unit tests.

▪ Business logic
• Tests for each path through a method
• Happy path as well as failure paths

▪ Constructors and accessors

▪ Defensive programming checks
• Validation of method arguments
 NullPointerException

 IllegalArgumentException

• Validation of component state
 IllegalStateException

▪ Special methods as needed (e.g. equals, toString)

▪ Exception handling

5

Here's the typical formula for a test.

▪ Create a test class for each component under test (CuT) that has privileged
access to the component.
• In Java, the test code typically has package access.

▪ Create a test method that covers each happy and failure scenario.
• Setup test scenario
• Invoke the test
• Analyze the test results

▪ This simple formula can be adjusted as needed.

6

Unit testing frameworks like JUnit have many
built-in assertions for analysis in your tests.

▪ Test truth-hood
•assertTrue(condition[, message])
•assertFalse(condition[, message])

▪ Test values or objects for equality
•assertEquals(expected, actual[, message])
•assertNotEquals(expected, actual[, message])

▪ Test objects for identity (obj1 == obj2)
•assertSame(expected, actual[, message])
•assertNotSame(expected, actual[, message])

▪ Test null-hood
•assertNull(object[, message])
•assertNotNull(object[, message])

▪ Automatic failure: fail(message)
7

One tip for coding for testability is to make strings and constants
available to the unit test.

▪ Idioms for testable code:
• Make message strings (and other values) constants
• Make these members package-private (or public)

▪ Example:
public class Hero {

// Package private for tests
static final String STRING_FORMAT = "Hero [id=%d, name=%s]";

@JsonProperty("id") private int id;
@JsonProperty("name") private String name;

public Hero(@JsonProperty("id") int id, @JsonProperty("name") String name) {…}

public int getId() {…}

public void setName(String name) {…}
public String getName() {…}

@Override
public String toString() {…}

}

8

To write an "independent" unit test of a class, you will need to
control the dependencies.

▪ Most components will have dependent classes
• Stored as attributes
• Passed in as arguments

▪ This coupling forms a "seam" between the component under test and it's
dependencies:

▪ Use dependency injection rather than direct instantiation.
9

Isolate the CuT by injecting friendly and mock objects.

▪ Fully tested internal components (usually Model objects like Entities and
Value Objects)

▪ Mock objects that stand in for internal or external components

▪ There are other variations on test instruments: Spy, Dummy, Fake,
Simulator.

10

Mock object frameworks like Mockito have APIs for setting up test
scenarios and inspecting results.

▪ Setting up test scenarios
• Specify the response, e.g. return value or exception thrown, when a method is called

on a mock object
•when(mock.method(args)).thenReturn(value)

▪ Verify that interactions occurred during a unit test
• Check if methods were called the expected number of times in the manner expected
•verify(mock, times(1)).method(args)

▪ Answer objects that allow you to capture and later test intermediate results
of unit test

11

Make unit testing part of your project's Definition of Done and
your quality will rise!

▪ Unit testing is a subtle art.

▪ Keep your test code isolated from production code.

▪ Use the testing formula: arrange, invoke, analyze.

▪ Use an Assertion library like JUnit.

▪ Use a Mock object framework like Mockito.

12

Note: see the after-class exercise for more

detailed instructions for unit testing with

JUnit, Mockito, and Maven along with

examples from the HeroesAPI unit tests.

https://www.se.rit.edu/~swen-261/topics/Unit%20Testing.html#ex_unit_test_i

Make unit testing part of your project's Definition of Done and
your quality will rise!

13

